CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Autoproteolytic Fragments Are Intermediates in the Oligomerization/ Aggregation of the Parkinson's Disease Protein Alpha-Synuclein as Revealed by Ion Mobility Mass Spectrometry

Camelia Vlad,^[a] Kathrin Lindner,^[a] Christiaan Karreman,^[b] Stefan Schildknecht,^[b] Marcel Leist,^[b] Nick Tomczyk,^[c] John Rontree,^[c] James Langridge,^[c] Karin Danzer,^[d] Thomas Ciossek,^[d] Alina Petre,^[a, e] Michael L. Gross,^[e] Bastian Hengerer,^[d] and Michael Przybylski*^[a]

cbic_201100569_sm_miscellaneous_information.pdf

Supporting Information

Materials and Methods

HPLC-MS analysis of aSyn oligomerization products

ESI-ion trap mass spectra were recorded on a Bruker Esquire 3000+ ion trap mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a direct infusion and ESI-LC-MS system. LC-MS experiments were carried out using an Agilent Technologies (Waldbronn, Germany) HP1100 liquid chromatograph for binary gradient elution (pump model G1312A), including an autosampler (G1313A) and a DAD (G1315 B) coupled to the ion trap mass spectrometer. A 150 mm x 4.6 mm x 3 µm Discovery RP-18 column was used for the separation of peptides. Mass spectra were recorded in the full scan mode, scanning from m/z 200 to 1500. Ion source parameters were 20 psi nebulizer gas and 9 L/min of drying gas, with a temperature of 300 °C. Tandem-MS experiments were carried out in the autofragmentation mode. Sequences of the extracted peptides were determined by subjecting the tandem- MS results to the NCBInr database search using the MASCOT programme.

Amino-Succinylation of alpha-synuclein

Chemical modification of proteins by amino-succinylation with succinic anhydride has been successfully used in the structure-function studies of several proteins, by reaction of succinic anhydride with lysine- ε -amino groups and the N-terminal α -amino group, converting them from basic to acidic protein derivatives^[26]. Succinylation of α Syn was performed in 0.3 M sodium phosphate buffer, pH 7.5, by addition of increasing amounts (1 mg/mL) of a succinic anhydride solution in DMSO (0.5, 1, 2, 10, 50, 100-fold molar excess to protein) to the continuously stirred protein solution (1 mg/mL) over a period of 90 min, and the pH of the reaction mixture maintained by addition of 0.2 M NaOH. The reaction was allowed to proceed for 30 min at 25 °C and the protein solution then thoroughly dialyzed against water, followed by gel electrophoresis and mass spectrometric analysis. As shown in Figure S5A, B, the succinylation provided a protein derivative with a mass increase of 1700 Da corresponding to modification of all lysine residues (15) and the N-terminus, and the His50 residue; the fully succinylated α Syn does not show any oligomerization- aggregation, and only a dimer (Figure S5).

Table S1: α Syn Autoproteolytic truncation and degradation products observed by gel electrophoresis and identified by IMS-MS and MALDI-MS.

No. a	Spot No. a	m.w. gel [kDa] ^b	m.w. MS ^c [Da]	Sample description	Sequence ^g	
1	a	16.7	14460.0 ^d	wt-αSyn	1-140	
	a'	35.1	28919.6 ^d	wt-αSyn / dimer	1-140	
	b	16.7	13706.6 ^e	$wt\text{-}\alpha Syn \ / \ N\text{-}terminal \ truncation$	7-140	
	c	14.5	12163.0 ^d	$wt\text{-}\alpha Syn \ / \ N\text{-}terminal \ truncation$	14-133	
	c'	25.9	25081.5 ^f	$wt\text{-}\alpha Syn$ / dimer of N-terminal truncation		
	d	12.3	7274.5 d,e,f	$wt\text{-}\alpha Syn/autoproteolyticfragment$	72-140	
	e	10.9	10436.0 ^d	wt- αSyn / N-terminal truncation	40-140	
2		16.7	14329.4 ^e	αSyn V 70A V71A T72A G73A V74A T75A	1-140	
3		16.7	14245.4 ^e	αSyn V70G V71G T72G G73G V74G T75G	1-140	
4		12.3	7365.3 ^e	$\alpha Syn(71-140)$ / chemical synthesis	71-140	
5		12.3	7274.4 ^e	αSyn(72-140) / recombinant	72-140	
6		17.4	14288.7 ^e	βsyn		

^aSyn sample/spot number corresponding to Figure 1.

Table S2: Mass spectrometric characterization of electrophoretic bands: Tryptic peptides of monomer and dimer α Syn **1a** and **1a'** identified by a) LC/ESI-MS and b) MALDI-TOF-MS.

No.	Peptide sequence		Molecular ion observed	M_{exp}	M_{calc}
1	AKEGVVAAAEK	11 - 21	a) 536.7) ²⁺	1071.4	1071.6
2	EGVVAAAEK	13 - 21	a) $(437.2)^{2+}$	872.7	872.4
3	EGVVHGVATVAEKTK	46 - 60	a) $(509.1)^{3+}$	1523.4	1523.8
4	EGVVHGVATVAEK	46 - 58	a) $(432.6)^{3+}$	1295.1	1295.6
5	EGVLYVGSKTK	35 - 45	a) $(950.8)^{2+}$	1179.5	1179.6
6	EGVLYVGSK	35 - 43	a) (476.2) ²⁺	950.5	950.5
7	MDVFMK	1 - 6	a) $(385.6)^{2+}$	769.3	769.3
8	TVEGAGSIAAATGFVKK	81 - 97	a) $(536.4)^{3+}$	1606.2	1606.8
9	TKEQVTNVGGAVVTGVTAVAQK	59 - 80	a) $(720.1)^{3+}$	2157.2	2157.4
10	TVEGAGSIAAATGFVK	81 - 96	a) (740.2) ²⁺	1478.5	1478.6
11	EQVTNVGGAVVTGVTAVAQK	61 - 80	a) $(643.6)^{3+}$	1927.9	1928.1
12	TKEQVTNVGGAVVTGVTAVAQKT VEGAGSIAAATGFVKKDQLGK	59 -102	b) (4288.7) ¹⁺	4287.7	4287.8
13	KDQLGKNEEGAPQEGILEDMPVDP DNEAYEMPSEEGYQDYEPEA	97 -140	b) (4959.1) ¹⁺	4958.1	4958.1

^bMol. weight of bands observed by gel electrophoresis.

^cMolecular mass of truncation/degradation products determined by mass spectrometry (MS)

^dMolecular mass of truncation/degradation products determined by IMS-MS.

^eMolecular mass of truncation/degradation products determined ESI-MS.

Molecular mass of truncation/degradation products determined MALDI-TOF-MS.

^gN-Terminal sequence determined by Edman sequencing (Applied Biosystems Procise-470 sequencer).

Supporting Figures

```
1
MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH
51
GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL
101
140
GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA
```


Figure S1: HPLC Purification (a) and ESI- mass spectrum (b) of freshly prepared recombinant *E. Coli* αSynuclein. See Materials and Methods for HPLC and MS analysis.

Figure S2: ESI- MS identification of N-terminal truncation product, $\alpha Syn(7-140)$, following 3 hrs incubation of αSyn in PBS buffer, pH 7.5. Edman sequence determination was performed with a Applied Biosystems Procise-470 sequencer as described)^[22b].

Figure S3: Scheme of the SYNAPT- ion mobility cell between the quadrupole analyzer and the orthogonal TOF analyzer^[18a]
(a); separation of peaks 1 and 2 (b); ion mobility drift time profile vs. m/z values of the IMS-MS analysis of the in vitro αSyn incubation mixture for 7 days (c).

 72 TGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA 140

Figure S4: HPLC Purification (a) and ESI-mass spectrometric characterization (b) of recombinant α Syn(72-140) fragment expressed in E. Coli.

Figure S5: Gel electrophoretic and ESI-MS characterization of amino- succinylated $\alpha Syn \ 1$.